Nonparametric Density Estimation in Compound Poisson Process Using Convolution Power Estimators

نویسنده

  • F. COMTE
چکیده

Consider a compound Poisson process which is discretely observed with sampling interval ∆ until exactly n nonzero increments are obtained. The jump density and the intensity of the Poisson process are unknown. In this paper, we build and study parametric estimators of appropriate functions of the intensity, and an adaptive nonparametric estimator of the jump size density. The latter estimation method relies on nonparametric estimators of m-th convolution powers density. The L-risk of the adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls. Numerical simulation results on various jump densities enlight the good performances of the proposed estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of Histogram Type Estimators

We introduce simple nonparametric density estimators that generalize the classical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewise polynomials, where the coe cients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators...

متن کامل

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Estimation of the Jump Size Density in a Mixed Compound Poisson Process

Abstract. Consider a mixed compound process Y (t) = ∑N(Λt) i=1 ξi where N is a Poisson process with intensity 1, Λ a positive random variable, (ξi) a sequence of i.i.d. random variables with density f and (N,Λ, (ξi)) are independent. In this paper, we study nonparametric estimators of f by specific deconvolution methods. Assuming that Λ has exponential distribution with unknown expectation, we ...

متن کامل

Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels

We introduce the Gaussian Process Convolution Model (GPCM), a two-stage nonparametric generative procedure to model stationary signals as the convolution between a continuous-time white-noise process and a continuous-time linear filter drawn from Gaussian process. The GPCM is a continuous-time nonparametricwindow moving average process and, conditionally, is itself a Gaussian process with a non...

متن کامل

Nonparametric Estimation for Lévy Models Based on Discrete-Sampling

A Lévy model combines a Brownian motion with drift and a purejump homogeneous process such as a compound Poisson process. The estimation of the Lévy density, the infinite-dimensional parameter controlling the jump dynamics of the process, is studied under a discrete-sampling scheme. In that case, the jumps are latent variables whose statistical properties can in principle be assessed when the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013